

Contents lists available at ScienceDirect

# Journal of Alloys and Compounds



journal homepage: www.elsevier.com/locate/jallcom

# Mechanochemical synthesis of (Fe,Ti)<sub>3</sub>Al-Al<sub>2</sub>O<sub>3</sub> nanocomposite

# M. Rafiei, M.H. Enavati\*, F. Karimzadeh

Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

#### ARTICLE INFO

Article history: Received 30 July 2009 Received in revised form 1 September 2009 Accepted 2 September 2009 Available online 8 September 2009

Keywords: Composite materials Intermetallics Nanostructured materials Mechanical alloving

# 1. Introduction

Fe<sub>3</sub>Al based intermetallics indicate attractive properties including, high hardness, high melting point, relatively low density compared with Fe- and Ni-based alloys and excellent oxidation and corrosion resistance [1]. As a result these compounds are useful for many structural applications including, gas metal filters, heating element, heat treatment fixtures, high temperature dies and molds and cutting tools [2,3]. Addition of third alloying element such as Ti, Cr, ... to Fe<sub>3</sub>Al intermetallic compound can lead to the improvement of mechanical properties including ductility at room temperature and creep resistance at high temperature, chemical stability and tribological behavior by solid solution and/or precipitation hardening as well as grain boundary strengthening [4–6].

Moreover it was shown that the dispersion of a hard second phase material (e.g., Al<sub>2</sub>O<sub>3</sub>) within the matrix can enhance the mechanical properties [7]. Intermetallic reinforced alumina composites exhibit several advantages such as; high strength, good wear resistance and improved fracture toughness [8,9].

There have been several investigations on preparation of titanium aluminides and iron aluminides matrix nanocomposites by mechanical alloying (MA) but, no study on synthesis of (Fe,Ti)<sub>3</sub>Al matrix nanocomposite was reported in the literature. Zhang et al. [10] reported that MA of Al–TiO<sub>2</sub> powder mixture leads to the formation of a rang of Ti-based composites including Ti(Al,O)/Al<sub>2</sub>O<sub>3</sub>,  $Ti_x Al_v(O)/Al_2O_3$  and  $Ti_3 Al/TiAl$ .

# ABSTRACT

Formation mechanism of (Fe,Ti)<sub>3</sub>Al-Al<sub>2</sub>O<sub>3</sub> nanocomposite prepared by mechanical alloying of Fe, Al and TiO<sub>2</sub> with molar ratio of 6:7:3 was studied. The structural changes of powder particles during mechanical alloying were investigated by X-ray diffractometery. Morphology and microstructure of powder particles were characterized by scanning electron microscopy. It was found that during mechanical alloying Al first reacts with TiO<sub>2</sub> leading to the gradual formation of crystalline Ti and amorphous Al<sub>2</sub>O<sub>3</sub> phases. In the second stage Ti and remaining Al diffuse into the Fe lattice and as a result a Fe(Al,Ti) solid solution develops. This structure transformed to (Fe,Ti)<sub>3</sub>Al intermetallic compound at longer milling times. Heat treatment of this structure led to the crystallization of Al<sub>2</sub>O<sub>3</sub> and ordering of (Fe,Ti)<sub>3</sub>Al phases.

© 2009 Elsevier B.V. All rights reserved.

Forouzanmehr et al. [11] synthesized the TiAl/Al<sub>2</sub>O<sub>3</sub> nanocomposite by MA of Al and TiO<sub>2</sub> powder mixture and reported that TiO<sub>2</sub> is gradually reduced by Al during ball milling. Khodaei et al. [12] synthesized Fe<sub>3</sub>Al-Al<sub>2</sub>O<sub>3</sub> nanocomposite by MA of Al and Fe<sub>2</sub>O<sub>3</sub> powder mixture and reported that prior to the Fe<sub>2</sub>O<sub>3</sub>-Al combustion reaction, powder particles attained a nanocrystalline structure which promotes the Fe<sub>2</sub>O<sub>3</sub>-Al reaction by providing high diffusivity paths.

In our previous work [13] the formation of (Fe,Ti)<sub>3</sub>Al intermetallic compound was discussed. In this work the formation mechanism of (Fe,Ti)<sub>3</sub>Al-Al<sub>2</sub>O<sub>3</sub> nanocomposite by MA starting from Fe, Al and TiO<sub>2</sub> powder mixture is reported.

#### 2. Experimental

Fe, Al and TiO<sub>2</sub> powder mixture with purity of 99.8%, 99.5% and 99%, respectively were used as starting materials. The Fe powder particles had a nearly uniform size of  ${\sim}100\,\mu$ m. Al particles were irregular in shape with a size distribution of 50–100  $\mu$ m and TiO<sub>2</sub> particles were very fine with a size distribution of 200-300 nm.

The Fe, Al and TiO<sub>2</sub> powders with molar ratio of 6:7:3 were mixed according to the reaction (1). MA was carried out in a high energy planetary ball mill, nominally at room temperature and under Ar atmosphere. The milling media consisted of five 20 mm diameter balls confined in a 120 ml volume vial. The ball and vial materials were hardened chromium steel. Ball to powder weight ratio and rotation speed of vial were 10:1 and 500 rpm, respectively. The total powder mass was 18 g with 0.3 wt.% stearic acid as a process control agent (PCA). Samples were taken at selected time intervals and characterized by X-ray diffraction (XRD) in a Philips X' PERT MPD diffractometer using filtered Cu K<sub> $\alpha$ </sub> radiation ( $\lambda$  = 0.1542 nm). Morphology and microstructure of powder particles were characterized by scanning electron microscopy (SEM) in a Philips XL30. The mean powder particle size was estimated from SEM images of powder particles by image tool software. The average size of about 30 particles was calculated and reported as mean powder particle size.

Isothermal annealing was carried out to study the thermal behavior of milled powders. A small amount of powder was sealed and isothermally annealed at 900 °C for 1 h in a conventional furnace and then cooled in air. The structural transition

<sup>\*</sup> Corresponding author. Tel.: +98 311 3915730; fax: +98 311 3912752. E-mail address: ena78@cc.iut.ac.ir (M.H. Enayati).

<sup>0925-8388/\$ -</sup> see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2009.09.007



Fig. 1. XRD patterns of Fe, Al and TiO<sub>2</sub> powder mixture at different milling times.

occurred during annealing were determined by XRD. The crystallite size and internal strain of powders were estimated using the Williamson–Hall method [14].

#### 3. Results and discussion

### 3.1. Structural evolution

 $(Fe,Ti)_3Al-35 vol.\% Al_2O_3$  nanocomposite can be synthesized starting from Fe, Al and TiO\_2 powder mixture according to the following reaction:

$$6Fe + 7Al + 3TiO_2 = 3(Fe, Ti)_3Al + 2Al_2O_3$$
 (1)

Fig. 1 shows XRD patterns of Fe, Al and  $TiO_2$  powder mixture as-received and after different milling times. XRD results suggest that the reaction (1) takes place in two subsequent stages;

$$4Al + 3TiO_2 = 3[Ti]_{Fe} + 2Al_2O_3$$
<sup>(2)</sup>

$$6Fe + 3[Al]_{Fe} + 3[Ti]_{Fe} = 3(Fe, Ti)_3Al$$
 (3)

As can be seen with increasing milling time the intensity of Fe, Al and  $TiO_2$  diffraction peaks decreases and their width increases due to the internal strain induced by lattice defects and refinement of crystallite size. Moreover Fe (110) diffraction peak gradually displaced toward lower angles. During milling Al can react with TiO<sub>2</sub> according to the reaction (2).

 $\Delta G^{\circ}_{298}$  for reaction (2) has a very high negative value (-498212 J/mol) indicating that reaction (2) can thermodynamically take place at room temperature. However reactions with negative  $\Delta G^{\circ}_{298}$  do not necessarily occur at room temperature because of their slow kinetic. In this regard MA can enhance kinetics of reactions by creating high diffusivity paths, providing extensive interface area between reactants and by the dynamic removing of reaction product at interfaces due to the repeated fracturing and cold welding of powder particles and local temperature rise [15].

The displacement of Fe (1 1 0) peak toward lower angles (Fig. 2) after 20 h of MA suggests that Ti formed by reaction (2) and remaining Al dissolve into Fe lattice according to the reaction (3) and therefore a Fe(Al,Ti) solid solution forms during milling. Increasing milling time to 40 h led to the transformation of Fe(Al,Ti) solid solution to (Fe,Ti)<sub>3</sub>Al intermetallic compound which is accompanied by a change in XRD peaks position (Fig. 1). Similar behavior was observed during MA of Fe, Al and Ti ternary system [13]. It should be noted that the Al<sub>2</sub>O<sub>3</sub> XRD peaks formed by reaction (1) cannot be observed on XRD patterns (Fig. 1). In fact in-situ formed Al<sub>2</sub>O<sub>3</sub>



Fig. 2. Displacement of Fe(110) diffraction peak.

Table 1

Crystallite size and internal strain of (Fe,Ti)3 Al phase at different milling times.

| Milling time (h) | Crystallite size (nm) | Internal strain (%) |
|------------------|-----------------------|---------------------|
| 40               | 20                    | 2                   |
| 60               | 12                    | 2                   |
| 100              | 10                    | 2                   |

particles are expected to have a very small size with an amorphous structure [16,17]. Formation of amorphous  $Al_2O_3$  phase during ball milling of Al and TiO<sub>2</sub> powder mixture was previously reported [11].

Lack of superlattice diffraction peaks for  $(Fe,Ti)_3Al$  phase indicates that this phase has a disordered crystal structure. Increasing milling time up to 100 h has no significant effect on phase composition, but increased the broadening of XRD peaks. Crystallite size and internal strain of  $(Fe,Ti)_3Al$  phase at different milling times are given in Table 1. As seen the  $(Fe,Ti)_3Al$  crystallite size decreases with increasing milling time.

#### 3.2. Thermodynamics aspects

As mentioned reaction (1) takes place in two subsequent stages. First stage, reaction (2), has negative  $\Delta G^{\circ}_{298}$  and  $\Delta H^{\circ}_{298}$  values indicating that this reaction can occur at room temperature and is highly exothermic. The adiabatic temperature ( $T_{ad}$ ) is often used



Fig. 3. XRD patterns of Fe, Al and TiO\_2 powder mixture (a) after 100 h milling and (b) after heat treatment at 900  $^\circ$ C for 1 h.

as a criterion for anticipation of modality of reactions [18].  $T_{ad}$  is the highest temperature that the reaction system can reach, provided that all the released heat is used to increase the temperature of system after the initiation of reaction [19]. It has been empirically demonstrated that the reaction will be self-sustaining only if  $T_{ad} \ge 1527 \,^{\circ}C$  [20].

The value of  $T_{ad}$  for reaction (2) was calculated to be about 1532 °C [19]. Therefore reaction (2) is expected to occur with a combustion mode during ball milling. The addition of diluents will however decrease the  $T_{ad}$  [19]. In this work extra Fe and Al were added to the starting powder mixture to obtain (Fe,Ti)<sub>3</sub>Al matrix. In this case  $T_{ad}$  was calculated using following relation:

$$-\Delta H^{\circ}_{298} = 2 \int_{298}^{T_{ad}} C_{p}^{Al_{2}O_{3}} dT + 3 \int_{298}^{T_{ad}} C_{p}^{Ti(\alpha)} dT + 6 \int_{298}^{T_{ad}} C_{p}^{Fe(\alpha)} dT + 3 \int_{298}^{933} C_{p}^{Al(s)} dT + 3 \times \Delta H_{Al}^{m} + 3 \int_{933}^{T_{ad}} C_{p}^{Al(l)} dT$$
(4)

where in this equation  $\Delta H^{\circ}_{298}$  is the enthalpy change of reaction at room temperature,  $C_{\rm p}$  the heat capacity and  $\Delta H_{\rm Al}{}^{\rm m}$  the enthalpy of fusion of Al. The  $T_{\rm ad}$  in presence of extra Fe and Al was calculated to be 787 °C indicating that the modality of reaction (2) is gradual (progressive) rather than self-propagating combustion.

As seen in Fig. 3 after isothermal annealing (900 °C, 1 h) of 100 h milled sample the  $Al_2O_3$  peaks are observed on XRD pattern. The appearance of crystalline  $Al_2O_3$  peaks can further confirm that the  $Al_2O_3$  formed during ball milling has an amorphous structure which subsequently transforms to a crystalline structure during annealing. Also the presence of (Fe,Ti)<sub>3</sub>Al superlattice diffraction peaks in annealed sample implies that the degree of DO<sub>3</sub> ordering increases during annealing.

The crystallite size and internal strain of (Fe,Ti)<sub>3</sub>Al and Al<sub>2</sub>O<sub>3</sub> phases after heat treatment are given in Table 2.

Table 2

Crystallite size and internal strain of (Fe,Ti)\_3Al and  $Al_2O_3$  phases after heat treatment at 900  $^\circ C$  for 1 h.

| Phase                          | Crystallite size (nm) | Internal strain (%) |
|--------------------------------|-----------------------|---------------------|
| (Fe,Ti) <sub>3</sub> Al        | 70                    | 0.85                |
| Al <sub>2</sub> O <sub>3</sub> | 55                    | 0.75                |

#### 3.3. Morphological changes

Morphological changes of powder particles during milling were analyzed by SEM observations. As can be seen in Fig. 4 after 2 and 5 h of milling times the powder particles were irregular in shape with non-uniform size distribution. The mean powder particle size after 2 h of milling time was about 45  $\mu$ m which reduced to 35  $\mu$ m as milling time increased to 5 h. On further milling the powder particle size continuously decreased and became more uniform so that after 100 h of milling time the mean powder particle size was about 10  $\mu$ m. The very fine powder particles (Fig. 4c and e) formed at final stage of milling are as a result of formation of (Fe,Ti)<sub>3</sub>Al and Al<sub>2</sub>O<sub>3</sub> brittle phases as confirmed by XRD results (Fig. 1). It should be noted that the larger particles in this stage are an agglomeration of many smaller particles.

# 3.4. Microstructural studies

Fig. 5 shows cross-sectional SEM images of powder particles after different milling times. As can be seen after 2 h of milling time a composite microstructure consisting of cold welded Fe, Al and TiO<sub>2</sub> phases is formed. At early stage this structure is coarse and non-uniform. Increasing milling time to 5 h led to the refinement of composite microstructure as a result of repeated cold welding and fracturing of powder particles. This fine microstructure includes an extensive interface area between Fe, Al and TiO<sub>2</sub> phases which promotes the interdiffusion of atoms through high diffusivity paths



Fig. 4. SEM images of powder particles after (a) 2 h, (b) 5 h, (c and d) 60 h and (e and f) 100 h of milling times.



Fig. 5. Cross-sectional SEM images of Fe, Al and TiO<sub>2</sub> powder mixture after (a) 2 h, (b) 5 h (c and d) 60 h of milling times.

(dislocations and grain boundaries) and therefore can increase the reaction kinetics at ambient temperature. At longer milling times a featureless microstructure is observed on SEM (Fig. 5c and d) indicating that (Fe,Ti)<sub>3</sub>Al–Al<sub>2</sub>O<sub>3</sub> nanocomposite is completely formed in consistence with XRD results.

# 4. Conclusion

Mechanical alloying of Fe, Al and TiO<sub>2</sub> powder mixture led to the formation of (Fe,Ti)<sub>3</sub>Al–Al<sub>2</sub>O<sub>3</sub> nanocomposite. It was found that the TiO<sub>2</sub> oxide is gradually reduced by Al during milling. This reaction led to the formation of crystalline Ti and amorphous Al<sub>2</sub>O<sub>3</sub>. On further milling Ti (reduced from TiO<sub>2</sub>) and remaining Al dissolved into Fe lattice and formed a Fe(Al,Ti) solid solution which transformed to (Fe,Ti)<sub>3</sub>Al intermetallic compound with disordered DO<sub>3</sub> structure at longer milling times. Annealing of final structure led to the crystallization of amorphous Al<sub>2</sub>O<sub>3</sub> and ordering of (Fe,Ti)<sub>3</sub>Al matrix.

### References

[1] K. Matsuura, Y. Obara, M. Kudoh, ISIJ. Int. 46 (2006) 871-874.

- [2] J.R. Knibloe, R.N. Wright, V.K. Sikka, R.H. Baldwin, C.R. Howell, Mater. Sci. Eng. A 153 (1992) 382–386.
- [3] K. Yoshimi, S. Hanada, JOM (1997) 46-49.
- [4] S.M. Zhu, M. Tamura, K. Sakamoto, K. Iwasaki, Mater. Sci. Eng. A 292 (2000) 83–89.
- [5] R.T. Fortnum, D.E. Mikkola, Mater. Sci. Eng. A 9 (1987) 223–231.
- [6] M.G. Mendiratta, S.K. Ehlers, H.A. Lipsitt, Metall. Trans. A18 (1987) 509–518.
- [7] N.J. Welham, Intermetallics 6 (1998) 363-368.
- [8] S. Schicker, D.E. Garcia, I. Gorlov, R. Janssen, N. Claussen, J. Am. Ceram. Soc. 82 (1999) 2607–2612.
- [9] D. Horvitz, I. Gotman, E.Y. Gutmanas, N. Claussen, J. Eur. Ceram. Soc. 22 (2002) 947–954.
- [10] D.L. Zhang, Z.H. Cai, G. Adam, JOM (2004) 53-56.
- [11] N. Forouzanmehr, F. Karimzadeh, M.H. Enayati, J. Alloys Compd. 478 (2009) 257–259.
- [12] M. Khodaei, M.H. Enayati, F. Karimzadeh, J. Alloys Compd. 467 (2009) 159– 162.
- [13] M. Rafiei, M.H. Enayati, F. Karimzadeh, J. Alloys Compd. 480 (2009) 392– 396.
- [14] G.K. Williamson, W.H. Hall, Acta. Metall. 1 (1953) 22-31.
- [15] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1-184.
- [16] J.M. Wu, Mater. Lett. 48 (2001) 324-330.
- [17] M. Uma Devi, Ceram. Int. 30 (2004) 555-565.
- [18] N.Q. Wu, Mater. Sci. Technol. 14 (1997) 287-292.
- [19] Y. Li, Z. Zheng, J. Mater. Sci. Technol. 15 (1999) 271-275.
- [20] Z. Peng-lin, X. Tian-dong, Z. Guo-dong, Y. Li-jing, Z. Wen-jun, Trans. Nonferr. Met. Soc. China 17 (2007) 27-31.